Social Icons

22 Mei 2016


Redshift caused by refraction, not gravity

It is quite clear that deflection of starlight caused by refraction, not gravity. The term of gravitational redshift as we know is the term in the frame deflection of starlight by the Sun or light bending by gravity field of massive object.

15 Mei 2016



Clocks at higher altitude tick faster than clocks on Earth's surface. It is not caused by gravity, but by air density of atmosphere. Closer to the earth surface, the air is denser compared to the density of the air layer above it. The density is getting looser or weaker when it is getting higher.
Tentu saja, pesawatnya juga bergerak lebih cepat!

The atmosphere of Earth is the layer of gases, commonly known as air, that surrounds the planet Earth and is retained by Earth's gravity. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).

By volume, dry air contains 78.09% nitrogen, 20.95% oxygen,0.93% argon, 0.039% carbon dioxide, and small amounts of other gases. Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere. Air content and atmospheric pressure vary at different layers, and air suitable for use in photosynthesis by terrestrial plants and breathing of terrestrial animals is found only in Earth's troposphere and in artificial atmospheres.

The atmosphere has a mass of about 5.15×1018 kg, three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner and thinner with increasing altitude, with no definite boundary between the atmosphere and outer space. The Kármán line, at 100 km (62 mi), or 1.57% of Earth's radius, is often used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km (75 mi). Several layers can be distinguished in the atmosphere, based on characteristics such as temperature and composition.


Hafele-Keating Experiment in 1971

Hafele and Keating aboard a commercial airliner, 
with two of the atomic clocks and a stewardess.

The Hafele–Keating experiment was a test of the theory of relativity. In October 1971, Joseph C. Hafele, a physicist, and Richard E. Keating, an astronomer, took four cesium-beam atomic clocks aboard commercial airliners. They flew twice around the world, first eastward, then westward, and compared the clocks against others that remained at the United States Naval Observatory. When reunited, the three sets of clocks were found to disagree with one another, and their differences were consistent with the predictions of special and general relativity.

General relativity predicts an additional effect, in which an increase in gravitational potential due to altitude speeds the clocks up. That is, clocks at higher altitude tick faster than clocks on Earth's surface. This effect has been confirmed in many tests of general relativity, such as the Pound–Rebka experiment and Gravity Probe A. In the Hafele–Keating experiment, there was a slight increase in gravitational potential due to altitude that tended to speed the clocks back up. Since the aircraft flew at roughly the same altitude in both directions, this effect was approximately the same for the two planes, but nevertheless it caused a difference in comparison to the clocks on the ground.



Clocks at higher altitude tick faster than clocks on Earth's surface. It is not caused by gravity, but by air density of atmosphere. Closer to the earth surface, the air is denser compared to the density of the air layer above it. The density is getting looser or weaker when it is getting higher.

It is has been known in traveling on an airplane. At higher altitude the density of amosphere is getting looser or weaker, and less of friction on an airplane.  Traveling in weaker density of atmosphere an airplane can move faster than in denser atmosphere.


7 Mei 2016


“What should you do when you find you have made a mistake like that? Some people never admit that they are wrong and continue to find new, and often mutually inconsistent, arguments to support their case “ (Stephen Hawking)


Isaac Newton thought the influence of gravity was instantaneous, but Einstein assumed it travelled at the speed of light and built this into his 1915 general theory of relativity.

Light-speed gravity means that if the Sun suddenly disappeared from the centre of the Solar System, the Earth would remain in orbit for about 8.3 minutes – the time it takes light to travel from the Sun to the Earth. Then, suddenly feeling no gravity, Earth would shoot off into space in a straight line.

But the assumption of light-speed gravity has come under pressure from brane world theories, which suggest there are extra spatial dimensions rolled up very small. Gravity could take a short cut through these extra dimensions and so appear to travel faster than the speed of light – without violating the equations of general relativity.

But how can you measure the speed of gravity? One way would be to detect gravitational waves, little ripples in space-time that propagate out from accelerating masses. But no one has yet managed to do this.

Kopeikin found another way. He reworked the equations of general relativity to express the gravitational field of a moving body in terms of its mass, velocity and the speed of gravity. If you could measure the gravitational field of Jupiter, while knowing its mass and velocity, you could work out the speed of gravity.
Bending waves

The opportunity to do this arose in September 2002, when Jupiter passed in front of a quasar that emits bright radio waves. Fomalont and Kopeikin combined observations from a series of radio telescopes across the Earth to measure the apparent change in the quasar’s position as the gravitational field of Jupiter bent the passing radio waves.

From that they worked out that gravity does move at the same speed as light. Their actual figure was 0.95 times light speed, but with a large error margin of plus or minus 0.25.

Their result, announced on Tuesday at a meeting of the American Astronomical Society meeting in Seattle, should help narrow down the possible number of extra dimensions and their sizes.

Gravitational waves are not part of the electromagnetic waves. Gravitational waves and electromagnetic waves are quite different. Measuring the speed of gravity in September 2002 by Kopeikin - radiowaves from quasar are bent by Jupiter's gravity and focused into a ring-was wrong:

1.There is no evidence radiowaves are bent by Jupiter's gravity.

2.Einstein's general theory of relativity was wrong. Light/electromagnetic waves are bent by refraction, not gravity.

3.Kopeikin’s experiment was wrong: It is Not the speed of gravity, but the propagation of radiowaves from quasar or the speed of light.

Question arise: What’s wrong with gravitational waves discovery by LIGO in 11 February 2016?

What new discoveries would have blown Einstein’s mind away if he would be transported to today’s era?
1.The Modern of Astronomy / Astronomical Navigation and the use of Nautical Almanac, can prove his special and general relativity was totally wrong, his proving method for ‘defelction of light by the Sun’ is not scientific and deeply wrong, the famous Arthur Eddington’s eclipse experiment of 1919 actually was error, and he realizes that’s why he never received Nobel Prize for his relativity.
He will realizes many of physicists make a mistake that was caused by his theory, and there are many unsolved mysteries in physycs. Many discovery in modern physics was wrong: measuring the speed of gravity, gavitational waves ..
He will realizes that he failed not only single one but three in classical tests.
2.Internet and google search can make 15 years old high school student become more genius than genius in the era of his life. (QuoraCom).

Sorry, Einstein, Kopeikin, LIGO, and all Einstein’s supporters those who said: “ I am certain, Einstein has always been right!”

Read on Blog: PhysicsIdiot


1 Mei 2016


The life time of Minkowski and his former student Albert Einstein  before the modern astronomy arise. They do not understand about 'The Space and Time', namely The Celestial Sphere, one of the fundamental concepts in the modern astronomy. They knowing not about Nautical Almanac as "holy book" in science of modern astronomy, that says refraction of light of celestial bodies can not be ignored. 
That is why, in Special and General Theory of Relativity Albert Einstein ignored the celestial sphere and refraction of light. 
A theory of four-dimensional space–time or 4D known as the "Minkowski spacetime" was misleading. There are no 4D, but 3D +1D in Modern Astronomy: Celestial Sphere Coordinate System. Einstein general theory of relativity  was totally wrong.(GSA)

“Einstein’s Law of Gravitation contains nothing about force. It describes the behaviour of objects in  a gravitational field – the planets, for example – not in terms of ‘ attraction ‘ but simply in terms of the paths they follow. To Einstein, gravitation is simple part of inertia; the movement of the stars and the planets arise from their inherent inertia; and the courses they follow are determined by the metric properties of space – or, more properly speaking,  the metric properties of the space-time continuum “  (Lincoln Barnett,  The Universe and Dr. Einstein, London, June 1949,  page 72 ).

Blogger Templates